Bel-cable.ru

Блог инженера Электрика
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Драйвер для светодиода своими руками на микросхеме MAX756

Драйвер для светодиода своими руками на микросхеме MAX756

Эта статья поможет всем желающим самостоятельно изготовить своими руками драйвер для светодиода на микросхеме MAX756 и, попутно, понять некоторые особенности питания светодиодов.

Особенность светодиода в роли нагрузки состоит в том, что он, не как лампа накаливания. У него нелинейная вольт-амперная характеристика питания. Поэтому нерационально питать его напрямую от батареи напряжением 4,5В, поскольку одна треть энергии будет истрачена напрасно, расходуясь на гасящем резисторе.

Чтобы светодиод обеспечить питанием от одной или двух батареек, необходим драйвер, который повышает выходное напряжение до нужной величины и поддерживающий его на стабильном уровне при неизбежной разрядке батареи.

Достаточно простой драйвер для светодиода можно собрать по следующей схеме:

За основу взята микросхема МАХ756 фирмы «Maxim», она специально создана для переносных радиоэлектронных приборов с независимым питанием. Драйвер продолжает работать даже при уменьшении питающего напряжения до 0,7 В. По необходимости выходное напряжение драйвера можно установить равным 3,3В или 5 В при токе нагрузки 300мА или 200 мА соответственно. Коэффициент полезного действия при максимальной нагрузке составляет более 87 %.

Разновидности токовых стабилизаторов

Светодиод загорается при достижении порогового значения тока. Для маломощных устройств этот показатель равняется 20 мА, для сверхъярких – от 350 мА. Разброс порогового напряжения объясняет наличие различных видов стабилизаторов.

Резисторные стабилизаторы

Для регулируемого стабилизатора параметров тока для маломощных светодиодов применяется схема КРЕН. Она предусматривает наличие элементов КР142ЕН12 либо LM317. Процесс выравнивания осуществляется при силе тока 1,5 А и напряжении на входе 40 В. В условиях нормального теплового режима резисторы рассеивают мощность до 10 т. Собственное энергопотребление составляет около 8 мА.

Узел LM317 удерживает на главном резисторе постоянную величину напряжения, регулируемую подстроечным элементом. Основной, или токораздающий элемент может стабилизировать ток, пропущенный через него. По этой причине стабилизаторы на КРЕН применяются для зарядки аккумуляторов.

Величина в 8 мА не изменяется даже при колебаниях тока и напряжения на входе.

Транзисторные устройства

Регулятор на транзисторах предусматривает использование одного или двух элементов. Несмотря на простоту схемы при колебаниях напряжения не всегда бывает стабильный ток нагрузки. При его увеличении на одном транзисторе повышается напряжение резистора до 0,5-0,6 В. после этого начинает работать второй транзистор. В момент его открытия первый элемент закрывается, а сила и величина тока, проходящие через него, понижается.

Читайте так же:
Кабель расчет по 6кв по току 1

Второй транзистор должен быть биполярным.

Для реализации схемы с заменой стабилитронов на диоды применяются:

  • диоды VD1 и VD2;
  • резистор R1;
  • резистор R2.

Подача тока через светодиодный элемент задается резистором R2. Для выхода на линейный участок ВАХ-диодов с привязкой к току базового транзистора используется резистор R1. Чтобы транзистор сохранял устойчивость, напряжение питания не должно быть меньше суммарного напряжения диодов + 2-2,5 В.

Для получения тока 30 мА через 3 последовательно подключенных диода с напряжением 3,1 В по прямой производится запитка 12 В. Резисторное сопротивление должно равняться 20 Ом при мощности рассеивания 18 мВт.

Схема нормализует режим работы элементов, снижает токовые пульсации.

Схема с советскими транзисторами. Допустимое напряжение советских КТ940 или КТ969 – до 300 В, что подходит, если источник света – мощный SMD-элемент. Параметры тока задаются резистором. Напряжение стабилитрона составляет при этом 5,1 В, а мощность – 0,5 В.

Минус схемы – падение напряжения при повышении силы тока. Его можно устранить, заменив биполярный транзистор на MOSFET с низкими параметрами сопротивления. Мощный диод заменяется элементом IRF7210 на 12 А или IRLML6402 на 3,7 А.

Стабилизаторы тока на полевике

Полевой элемент отличается закороченным истоком и затвором, а также встроенным каналом. При использовании полевика (IRLZ 24) с 3-мя выводами на вход подается напряжение 50 В, на выходе получается 15,7 В.

Для подачи напряжения задействуется потенциал заземления. Параметры тока на выходе зависят от начального тока стока, и не привязываются к истоку.

Линейные устройства

Стабилизатор, или делитель постоянного показателя тока принимает нестабильное напряжение. На выходе линейный прибор его выравнивает. Он функционирует по принципу постоянного изменения параметров сопротивления для выравнивания питания на выходе.

К преимуществам эксплуатации относятся минимальное число деталей, отсутствие помех. Недостатком является малый КПД при разнице питания на входе и выходе.

Феррорезонансное устройство

Стабилизатор для переменного тока устаревшей модели, схема которого представлена конденсатором и двумя катушками – с ненасыщенным и насыщенным сердечником. К насыщенному (индуктивному) сердечнику подается напряжение постоянного типа, не зависимое от параметров тока. Это облегчает подбор данных для второй катушки и емкостный диапазон стабилизации питания.

Читайте так же:
Акустический выключатель для освещения

Устройство работает по принципу качелей, которые сразу сложно остановить или раскачать сильнее. Подача напряжения происходит по инерции, поэтому возможны падения нагрузки или разрыв цепи питания.

Особенности схемы токового зеркала

Токовое зеркало, или отражатель выстраивается на паре транзисторов согласованного типа, т.е. с одинаковыми параметрами. Для их производства используется один светодиодный кристалл полупроводника.

Схема токового зеркала по уравнению Эберса-Молла. Принцип работы заключается в том, что транзисторные базы объединяются, а эмиттеры подкидываются на одну шину питания. В итоге параметры переходного напряжения сцепки «база – транзистор-эмиттер» равны.

Преимущества схемы заключаются в равном диапазоне устойчивости и отсутствии падения напряжение на резисторе-эмиттере. Параметры легче задаются при помощи тока. Недостаток заключается в эффекте Эрли – привязке напряжения на выходе к коллекторному и его колебания.

Схема токового зеркала Уилсона. Токовое зеркало может стабилизировать постоянную величину выходного тока и реализуется так:

  1. Транзисторы № 1 и № 1 включены по принципу стандартного токового зеркала.
  2. Транзистор № 3 фиксирует потенциал коллектора элемента № 1 на удвоенный параметр падения диодного напряжения.
  3. Оно будет меньше, чем напряжение питания, что подавляет эффект Эрли.
  4. Коллектор транзистора № 1 задействуется для установления режима схемы.
  5. Ток на выходе зависит от транзистора № 2.
  6. Транзистор № 3 трансформирует выходной ток в нагрузку с переменным напряжением.

Транзистор № 3 можно не согласовывать с остальными.

Стабилизатор компенсационного напряжения

Выпрямитель работает по принципу обратной связи цепи для напряжения. Полное или частичное напряжение приравнивает к опоре. В результате стабилизатор генерирует параметры напряжения ошибки, устраняя колебания яркости для светодиодов. Прибор состоит из следующих элементов:

  • Регулирующий элемент или транзистор, который совместно с сопротивлением нагрузки образует делитель напряжения. Эмиттерный показатель транзистора должен превышать ток нагрузки в 1,2 раза.
  • Усилитель – управляет РЭ, выполняется на базе транзистора №2. Маломощный элемент согласуется с мощным по составному принципу.
  • Источник напряжения опоры – в схеме задействуется стабилизатор параметрического типа. Он выравнивает напряжение стабилитрона и резистора.
  • Дополнительные источники.
  • Конденсаторы – для сглаживания пульсаций, устранения паразитного возбуждения.

Стабилизаторы компенсационного напряжения работают по принципу увеличения входного напряжения с дальнейшим возрастанием токов. Закрытие первого транзистора увеличивает сопротивление и напряжение зоны коллектор-эмиттер. После подачи нагрузки оно выравнивается до номинала.

Устройства на микросхемах

Для стабилизующих приборов применяется микросхема 142ЕН5 или LМ317. Она позволяет выровнять напряжение, принимая по цепи обратной связи сигнал от датчика, подключенного к сети тока нагрузки.

Читайте так же:
Ваз 2109 провода ближнего света

В качестве датчика задействует сопротивление, при котором регулятор может поддерживать постоянное напряжение и ток нагрузки. Сопротивление датчика будет меньше сопротивления по нагрузке. Схему задействуют для зарядных устройств, по ней же проектируется ЛЕД-лампа.

Импульсные стабилизаторы

Импульсный прибор отличается высоким КПД и при минимальных параметрах входного напряжения создают высокое напряжение потребителей. Для сборки используется микросхема МАХ 771.

Регулировать силу тока будут один или два преобразователя. Делитель выпрямительного типа выравнивает магнитное поле, понижая допустимую частоту напряжения. Для подачи тока на обмотку светодиодный элемент передает сигнал транзисторам. Стабилизация на выходе осуществляется посредством вторичной обмотки.

При классическом управлении семисегментными или матричными индикаторами микроконтроллером возникают несколько проблем:

  • увеличение количества линий управления;
  • необходимость устанавливать мощные буферные элементы;
  • необходимость постоянной работы микроконтроллера для поддержания динамической индикации.

Конечно же, все эти проблемы решаемы методом раздувания схем и программ микроконтроллеров, но есть специализированные микросхемы, позволяющие решить ряд проблем при динамической индикации. Одной из таких микросхем является MAX7219 или MAX7221.

Общие сведения о MAX7219 или MAX7221

Драйвер MAX7219 управляется по трехпроводной последовательной шине Microwire (3-Wire). MAX7221 управляется по шине SPI и имеет ограниченную скорость нарастания напряжения драйверов сегментов для снижения излучения EMI. Драйверы допускают каскадирование для управления большим числом индикаторов. Каждый из разрядов индикатора имеет независимую адресацию и его содержимое может быть обновлено без необходимости перезаписи всего индикатора. ИС MAX7219/MAX7221 также позволяют пользователю определять режим декодирования каждого разряда.

Кроме того, драйверы MAX7219 (MAX7221) имеют спящий режим с запоминанием информации, аналоговое и цифровое управление яркостью подключенных индикаторов и тестовый режим, включающий все LED сегменты.

MAX7219 (MAX7221) – драйвер восьми разрядного цифрового LED индикатора с последовательным интерфейсом. Драйвер может управлять восемью семисегментными индикаторами с точкой, либо отдельно 64 светодиодами в LED панелях с общим катодом. Таким образом, данные микросхемы подходят не только для семисегментных, но и для матричных индикаторов.

Два семисегментных индикатора Два семисегментных индикатора Матричный индикатор

MAX7219 и MAX7221 отличаются только интерфейсом. У MAX7219 интерфейс Serial 3-Wire, у MAX7221 — Serial SPI.

Читайте так же:
Бесшумные выключатели света legrand

Типовая схема включения

Как обычно, у таких микросхем имеется схема включения, которая не представляет какой-либо сложности, что и показано на рис. 1

Типовая схема включения MAX7219/7221

При помощи резистора на pin 18 задается ток ISET, которым устанавливается ток через светодиоды, что позволяет регулировать свечение сегментов индикатора «аналоговым» способом. В MAX7219/VAX7221 предусмотрена регулировка яркости сегментов с помощью ШИМа.

Расположение выводов (распиновка) MAX7219 и MAX7221

На рис. 2 показано расположение выводов драйвера.

Распиновка MAX7219, MAX7221

Рис. 2. Распиновка MAX7219, MAX7221

В таблице на рис. 3 описано назначение выводов, не забывайте кликать по картинкам для просмотра в полном размере!

Сначала разберём стандартную схему, которую можно найти в технической документации на LM317T. На ней кроме самого стабилизатора находится два конденсатора, один из которых установлен на входе (ёмкостью 0,1 мФ), а второй на выходе (1,0 мФ). А также двух резисторов R1 и R1.

Стандартная схема LM317t

Как видно резисторы R1 и R2 подключены к управляющему выходу устройства по схеме делителя напряжения. Сопротивление R1 является постоянным и его величина, по рекомендациям производителя, должна быть равна 240 Ом. С помощью R2 можно регулировать выходное напряжение. Его можно найти по формуле:

формула номер 1 317

В ней второе слагаемое мало, так как величина IADJ не может быть дольше 100 мА, поэтому его можно не учитывать в расчётах. Из формулы понятно, чем больше сопротивление R2, тем больше выходное напряжение.

Рассчитаем какое напряжение будет на выходе, если величина сопротивления R2 равна 1,5 кОм.

формула по которой находим U

Как видно и расчёта, на выходе будет напряжение 9 В. Но чтобы получить данную разность потенциалов на вход нужно подать напряжение большей величины.

Часто возникает задача найти R2 зная необходимое напряжение стабилизации. Для этого можно использовать формулу:

здесь вычисляем R2

Чтобы вам не пришлось делать расчёты вручную приведём таблицу, в которой все необходимые значения уже посчитаны (сопротивление R1 = 240 Ом).

Напряжение стабилизации, ВВеличина сопротивления R2, ОмБлижайшее стандартное значение, Ом
3336330
3,3393,6390
4,7662,4680
5720750
5,5816820
7,41180,81 200
914881 500
1016801 600
1220642 000
1526402 700
1832163 300
2036003 600
2545604 700
2749005 100
Читайте так же:
Аквариум автоматический выключатель света

На LM317T легко собрать драйвер тока. Обычно такие схемы используются для питания отдельных светодиодов и светодиодных матриц. Производители рекомендуют использовать такую схему:

Драйвер тока на Lm317

В этом примере выходной ток через светодиод устанавливается подбором сопротивления R1. Рассчитать его можно по формуле:

Вычисляем по формуле R1

где Iout – ток на выходе стабилизатора, который равен току через светодиод.

Типичный ток через одиночный маломощный светодиод равен 0,02 А. Подставляем данное значение в формулу и получаем сопротивление R1 – 62,5 Ом. Чтобы резистор не перегорел нужно определить его мощность. Для этого используем формулу:

P=lout2xR1

В нашем случае мощность резистора должна быть больше 0,02 2 *62,5=0,024 Вт, то есть подойдёт любой резистор, даже самый маленький.

После стандартных примеров перейдём к реальной конструкции. Рассмотрим регулируемый блок питания, в котором можно регулировать напряжение на выходе в диапазоне от 1,2 до 30 В и рассчитанный на максимальный выходной ток в 10 А. При этом БП имеет защиту от короткого замыкания.

регулируемы блок питания на lm317t

Данное устройство сделано из минимального количества недорогих деталей. Так как стабилизатор LM317T способен выдержать ток не более 1,5 А, то в конструкции используется транзистор MJE13009, благодаря которому на выходе можно получить ток равный 10 А.

Регулировка выходного напряжения осуществляется с помощью переменного резистора Р1 номиналом 5 кОм. Кроме этого в схеме используются шунтирующие резистора R1 и R2 с одинаковым сопротивлением – 200 Ом. После отключения питания конденсатор С1 разряжается через резистор R3 сопротивлением 10 кОм. На выходе трансформатора напряжение может быть от 12 до 35 В. Диодный мост можно брать любой, способный выдержать ток от 10 А и выше, например, GBJ2510 рассчитанный на 25 А.

Транзистор MJE13009 можно заменить на MJE13007 или отечественные КТ805, КТ808, КТ819 или другие. При выборе транзистора важно обращать внимание на силу тока на выходе стабилизированного блока питания.

Используемый транзистор и LM317T нужно устанавливать на радиатор с достаточно большой для охлаждения площадью. Для этих целей можно использовать систему охлаждения компьютерного процессора. Не забудьте изолировать LM317T от радиатора теплопроводящей прокладкой. Также на радиатор желательно установить и диодный мост.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector