Bel-cable.ru

Блог инженера Электрика
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

LED; драйверы

LED — драйверы

В статье С.Косенко Сетевая светодиодная лампа с блоком питания на микросхеме VIPer22A (Радио, 04/2012, с.21-23) приведена схема драйвера для лампы на LED:

схема сетевого драйвера на микросхеме VIPer22A

Применение 2-х типов светодиодов с разными углами рассеяния (15 и 120 град.) обусловлено получением светового потока без резких границ с большей яркостью в центре. Преобразователь обеспечивает на выходе напряжение 32 В при токе нагрузки 40 мА.

Дроссель L1 — доработанный высокочастотный ДМ-0,1 500 мкГн. Для увеличения его индуктивности до 2,2 мГн к имеющейся обмотке добавляют не меняя направление обмотки 2 слоя по 100 витков ПЭВ-2 0,12 мм с изоляцией между слоями (можно скотчем).

Монтаж деталей лампы, кроме светодиодов, выполнен на печатной плате:

печатная плата лампы

Светодиоды установлены на другой плате:

печатная плата для лампы

Регулировка яркости светодиодного модуля F6040

светодиодный модуль F6040

Данный светодиодный модуль представляет собой светодиодную матрицу со встроенным контроллером предназначен для подключение к сети питания напряжением 220 В.

…регулировка яркости отдельного модуля

На рисунках ниже приведены схемы для управления яркостью данного модуля. Все регуляторы можно разместить, например, внутри старых ненужных корпусах зарядок для телефонов.

регулировка яркости светодиодного модуля F6040. схема.

Рис.1. С использованием стабилитрона TL431

регулировка яркости светодиодного модуля F6040. схема.

Рис.2. С использованием индикаторной лампы

регулировка яркости светодиодного модуля F6040. схема.

Рис. 3. С применением SMD компонентов

Устройства можно собрать на следующих печатных платах:

Печатная плата для регулятора яркости LEDПечатная плата для схемы, изображенной на рис.2 Печатная плата для регулятора яркости LEDПечатная плата для схемы, изображенной на рис.3

Подробное описание работы устройств регулировки модулей LED приведено в источнике.

…регулировка яркости нескольких модулей F6040

регулятор яркости для LED F6040 (220В), схема

Устройство представляет собой повышающий преобразователь до 400В с ШИМ регулировкой. регулятор можно использовать и с другими LED матрицами суммарной мощностью не более 80 Вт.

Печатная плата рассчитана под резисторы МЛТ (или аналогичные импортные), переменный резистор СПО, С5 — керамический, С1 — плёночный, остальные плёночные серии К73 . Микросхему КР1446ВИ1 можно заменить на ICM7555.Диодный мост с обратным напряжением не менее 400 В и током не менее 1 А (можно поставить диоды, например, 1N4007). Стабилитрон — любой маломощный на напряжение 8..12 В, диоды КД510 заменимы диодами серий КД522, 1N4148, а FR155P — HER106-HER108, HER206-HER208.

В схеме применен полевой транзистор от импульсных блоков питания STR4NK60ZFP отличительная особенность которого — наличие защитных стабилитронов между затвором и стоком. Можно применить IFR840 (IRFBC40) с добавлением цепи защиты.

Дроссели L1 и L2 — от ЭПРА КЛЛ (они выполнены на гантелеобразных ферритовых магнитопроводах диаметром 8 мм и высотой 10 мм.

Дроссели L3 и L4 — индуктивностью 2,6 мГн намотаны на Ш-образном сердечнике от ЭПРА КЛЛ размером 14х12х12 мм.

…стробоскоп на модуле F6040

В состав драйвера LED модуля F6040 входит выпрямительный мост MB10C и две микросхемы DF6811BC (аналоги: MX2082S, SM2082C) — линейные стабилизаторы тока. Значение тока подбирается внешним резистором. Из-за отсутствия сглаживающего конденсатора в схеме, модуль можно использовать в качестве стробоскопа [3].

стробоскоп на модуле F6040

Схема светомузыкального стробоскопа

Предложенная автором схема позволяет превратить LED модуль в приставку-стробоскоп управляемую звуком (например, чем громче играет музыка, чем чаще вспышки). При повторении устройства LED матрицы необходимо установить на теплоотвод. Чертежи плат в формате Sprint LayOut можно скачать по ссылке указанной в источнике [3].

печатная плата стробоскопа на LED

  • И.Нечаев Уменьшение пульсаций яркости светодиодного модуля F6040 и регулятор яркости для него. — Радио, 2020, №5, с.44-48
  • И.Нечаев Регулятор яркости для нескольких светодиодных модулей F6040
  • И.Нечаев Стробоскоп на светодиодных модулях F6040. Радио, 2021, №2, с.45-47

Сетевой драйвер для светодиодов на BP2866XJ

Драйвер предназначен для использования в осветительных лампах на напряжение питания 85 — 265 В в диапазоне температур -40..105 град. С. Для использования требует минимальное количество навесных элементов.

Типовая схема включения BP2866

Типовая схема включения BP2866

Ток, протекающий через светодиоды задается резистором Rcs (далее, токовый резистор). Максимальный выходной ток для светодиодов определяется индексом XJ в маркировке микросхемы.

ИндексАBCDFG
Макс.ток (mA)240300400450500550
Номинальный ток (mA)160220250280350380
Читайте так же:
Датчик света параллельный выключатель

Ниже приведена схема расчета внешних компонентов.

Пиковый ток определяется из выражения (в мА):

пиковый ток

где Rcs значение токового резистора.

Ток, протекающий через светодиоды:

Время включения MOSFET в драйвере задается выражением:

Где:
L — значение индуктивности;
Vin — напряжение постоянного тока после выпрямительного моста;
Vled — напряжение на светодиодах.

Время выключения MOSFET в драйвере задается выражением:

Индуктивность рассчитывается по формуле:

расчет индуктивности в led драйвере

f — частота переключения системы, которая
пропорционально входному напряжению. Минимальная
частота переключения устанавливается при самом низком входном напряжении, максимальная частота переключения устанавливается на самом высоком уровне входного напряжения. Минимальное и максимальное время выключения BP2866XJ составляет 2,5 мкс и 250 мкс соответственно. Эти данные учитываются при расчете.

Rovp рассчитывается по формулам:

где: Vcs = 373 мВ, Vovp — необходимое значение напряжения OVP. Вывод Rovp имеет функцию «разрешения». Когда напряжение на выводе OVP ниже 0,3 в, микросхема отключена. Поэтому резистор надо выбирать более 15 кОм для активации выхода.

С1 — 10 мкФ х 400 В, С2 — 2,2 мкФ х 400 В. Диоды с обратным напряжением не менее 400 В. Взамен D1-D4 можно использовать диодную сборку.

Драйвер для фонарика на YX8115

Микросхема YX8115 предназначена для использования в малогабаритных фонариках и позволяет питать яркие светодиоды от источника тока напряжением 0,9 В — 1,5 В.

Микросхема отличается низким энергопотреблением и малой потребностью в дополнительных навесных элементах. Позволяет питать светодиоды током в диапазоне 0-500 мА, регулировка осуществляется за счет подбора индуктивности. КПД >80%.

Драйвер для фонарика на YX8115 (питание ярких светодиодов от источника 1,5 В)

Электролитический конденсатор С1 ёмкостью 10-100 мкФ на напряжение 10-16В, диод VD2 — шоттки, например, IN5817, IN5819 и др.

Каскадный драйвер

Схема каскадного led драйвера для питания от аккумуляторов цепочки из 20-30 светодиодов

Схема каскадного драйвера реализована на ШИМ контроллере LM3478 и работоспособна от напряжения 3 В, не содержит дефицитных деталей и рассчитан на мощность 1,5 Вт и питание одновременно до 30 светодиодов. ШИМ контроллер работает на частоте 300 кГц (регулируется резистором R1). Резистор R5 входит в цепь измерения тока, его сопротивление выбирается как можно меньше для повышения КПД.

Источник: Grant Smith Каскадный преобразователь расширяет возможности драйвера светодиодов. — РадиоЛоцман, 2020, №3, с.58-60.

LED балансир на LM317

Линейный стабилизатор напряжения LM317 можно вполне успешно (если не придираться к КПД подобных устройств) в качестве балансиров для питания светодиодов. В общем случае LM317 включается по схеме стабилизации тока. Ниже приведено как классическое (по документации) подключение, так и нестандартное подключение.

схема led балансира на LM317

Рис.1

На рис.1 приведена схема классического включения LM317 в качестве балансира для цепочки LED. Для уменьшения тепловыделения на микросхеме входное напряжение желательно выбирать не более чем на 2-3 вольта превышающее питание светодиодов.

схема led балансира на LM317рис.2

В схеме на рис. 2 в цепь стабилизации тока микросхемы включена только одна цепочка светодиодов, однако, при соблюдении одинаковости параметров элементов, во второй цепочке будет протекать тот же ток.

LED-драйверы

LED-драйверы разрабатываются специалистами компаний «Интеграл» и «Тандем Электроника» и производятся на собственных мощностях с использованием пассивных комплектующих ведущих мировых производителей, что гарантирует их высокие эксплуатационные характеристики. В драйверах светодиодов, которые по типу подразделяются на линейные, изолированные и неизолированные, используются собственные специально спроектированные микросхемы, обеспечивающие функционирование драйвера с высокими техническими параметрами (таблица 1).

Таблица. Краткие характеристики LED-драйверов

Uвх, ВР, ВтТип драйвераКПД,%Фактор мощностиПрименение
110/2205/10Линейный>90>0,6LED-трубки/лампы (эконом-вариант)
90-2556-22Изолированный>85>0,94LED-трубки
90-2553-22Неизолированный>86>0,9LED-трубки/лампы
90-2552060Изолированный>87>0,95Индустриальные/уличные светильники

Как видно из таблицы, разработанные LED-драйверы характеризуются расширенным диапазоном входного напряжения, высокой эффективностью, высоким фактором мощности. Стабильность тока всех типов драйверов не хуже ±(1-3)%, срок службы более 40 000 ч. Возможно увеличение срока службы до 80 000 ч и более за счет схемотехнических решений, исключающих электролитические конденсаторы в плате драйвера.

Читайте так же:
Замена выключателя света фар

Линейные LED-драйверы

Линейный драйвер представляет собой ограничитель тока, выполненный на семействе микросхем MCA1504, рассчитанных на типовой выходной ток 20, 30, 40 и 60 мА. Упрощенно ограничитель тока можно представить в виде некоего регулируемого резистора, сопротивление которого меняется в зависимости от напряжения на нем, за счет чего ток в цепи резистора остается постоянным [1]. Внешний вид драйвера и его схема показаны на рис. 1. Стабильность тока составляет ±2,5% в диапазоне сетевых напряжений 210-230 В (рис. 2).

Линейный светодиодный драйвер на ИМС МСА1504 40 мА

Рис. 1. Линейный светодиодный драйвер на ИМС МСА1504 40 мА:
а) внешний вид;
б) электрическая схема

Зависимость тока светодиодов от входного напряжения линейного драйвера

Рис. 2. Зависимость тока светодиодов от входного напряжения линейного драйвера с выходным током 40 мА на ИМС МСА1504

Изолированные LED-драйверы

Изолированный драйвер мощностью 6-22 Вт разработан на базе микросхемы MCA1501 [2], а мощностью 40-200 Вт — на базе MCA6062. Драйвер этого типа представляет собой гальванически изолированный от сети обратноходовой импульсный преобразователь напряжения (flyback converter) с контролем выходного тока через цепь обратной связи посредством оптопары и активным корректором коэффициента мощности (ККМ). Внешний вид драйверов на ИМС МСА1501 и МСА6062 и их блок-схема показаны на рис. 3.

Внешний вид изолированного LED-драйвера

Рис. 3. Внешний вид изолированного LED-драйвера:
а) 11 Вт;
б) 60 Вт;
в) блок-схема драйвера мощностью 60 Вт

Микросхемы MCA1501 и МСА6062 представляют собой сетевой светодиодный контроллер с ККМ, разработанный для управления обратно-ходовыми понижающими или повышающими преобразователями, работающими в режиме критической проводимости (Critical Conduction Mode). Драйверы данной конструкции характеризуются высокой стабильностью тока: изменение тока не превышает ±1% в диапазоне сетевых напряжений 90-255 В (рис. 4).

Зависимость тока светодиодов от входного напряжения изолированных LED-драйверов мощностью 11 и 60 Вт

Рис. 4. Зависимость тока светодиодов от входного напряжения изолированных LED-драйверов мощностью 11 и 60 Вт

В изолированном LED-драйвере большой мощности (60-200 Вт) используется схема обратноходового импульсного преобразователя напряжения на базе ИМС MCA6062 с активным ККМ на входе (рис. 5).

LED-драйвер мощностью 60-200 Вт

Рис. 5. LED-драйвер мощностью 60-200 Вт:
а) внешний вид;
б) блок-схема

Неизолированные LED-драйверы

Схема неизолированных светодиодных драйверов содержит фильтр радиопомех, блок выпрямителя, схему управления со встроенным активным либо с внешним пассивным ККМ и блок ключа с интегрирующим элементом. Данные LED-драйверы мощностью 3-22 Вт построены на базе микросхем MCA1602 и МСА1503 и представляют собой понижающий импульсный преобразователь напряжения (buck converter) с пассивным ККМ (для схемы с MCA1602) и активным ККМ (для схемы с МСА1503). Внешний вид неизолированных LED-драйверов и их блок-схема показаны на рис. 6, 7. Изменение тока неизолированных LED-драйверов на базе ИМС МСА1602 и МСА1503 в диапазоне сетевых напряжений 100-255 В не превышает ±3% (рис. 8).

Неизолированный LED-драйвер на базе микросхемы MCA1602

Рис. 6. Неизолированный LED-драйвер на базе микросхемы MCA1602:
а) внешний вид;
б) блок-схема

Неизолированный LED-драйвер на базе микросхемы MCA1503

Рис. 7. Неизолированный LED-драйвер на базе микросхемы MCA1503:
а) внешний вид;
б) блок-схема

Зависимость тока светодиодов от входного напряжения LED-драйверов на базе ИМС MCA1602

Рис. 8. Зависимость тока светодиодов от входного напряжения LED-драйверов на базе ИМС MCA1602 мощностью 6 Вт и МСА1503 мощностью 9 Вт

Управляемый источник питания

УИП при решении задачи создания интеллектуальных систем освещения обеспечивает реализацию двух основных функций:

  • прием, обработка и передача микросхеме LED-драйвера управляющего сигнала;
  • обеспечение заданной яркости свечения источника света при оптимальных режимах работы светодиодов.

Конструктивно УИП реализован на одной плате (рис. 9), которая содержит контроллер управления с каналом цифрового интерфейса и источник импульсного тока питания светодиодов — LED-драйвер. В составе УИП могут использоваться как изолированные, так и неизолированные LED-драйверы, аналогичные описанным выше.

Внешний вид УИП с неизолированным 20-Вт LED-драйвером

Рис. 9. Внешний вид УИП с неизолированным 20-Вт LED-драйвером

LED-драйвер мощностью 20 Вт, входящий в состав УИП, изображенного на рис. 9, представляет собой понижающий импульсный преобразователь напряжения (buck converter) с пассивным ККМ и схемой управления тока светодиодов по LIN-интерфейсу. Зависимости эффективности (КПД), выходного тока (тока светодиодов) и фактора мощности этого LED-драйвера представлены на рис. 10-12.

Читайте так же:
Выключатели света степень защиты

Зависимость эффективности от входного напряжения 20-Вт LED-драйвера в УИП

Рис. 10. Зависимость эффективности от входного напряжения 20-Вт LED-драйвера в УИП

Зависимость тока светодиодов от входного напряжения 20-Вт LED-драйвера в УИП

Рис. 11. Зависимость тока светодиодов от входного напряжения 20-Вт LED-драйвера в УИП

Зависимость фактора мощности от входного напряжения 20-Вт LED-драйвера в УИП

Рис. 12. Зависимость фактора мощности от входного напряжения 20-Вт LED-драйвера в УИП

Управление яркостью светодиодов осуществляется по следующему алгоритму (рис. 13): цифровой управляющий сигнал формируется контроллером пульта управления системы в соответствии с установленной на нем программой и поступает по двухпроводному оптически развязанному каналу связи в модуль интерфейса UART микроконтроллера управления УИП.

Структурная схема системы индивидуального управления светодиодными светильниками

Рис. 13. Структурная схема системы индивидуального управления светодиодными светильниками

Каждый микроконтроллер управления УИП имеет уникальный адрес. В системе пульт управления имеет статус мастера интерфейсной шины, остальные устройства являются ведомыми. Физически сигнал в линии передачи данных является токовым, что обеспечивает устойчивость к внешним помехам и позволяет создавать линии связи длиной до 200 м. В каждом устройстве имеется блок сопряжения с микроконтроллером через оптическую сигнальную развязку. Блок интерфейса микроконтроллера управления модифицирует протокол LIN, уменьшая скорость обмена данными до скорости 10 кбит/с, что обеспечивает устойчивую работу канала связи на длинных расстояниях при вполне достаточной для управления системами освещения скорости. В соответствии с принятой командой микроконтроллер выдает сигнал управления (ШИМ или линейный) на вход диммирования микросхемы LED-драйвера.

Основные особенности

Мощность, которую эти устройства способны отдавать под нагрузкой, является важным показателем. Не стоит перегружать его, пытаясь добиться максимальных результатов. В результате таких действий могут выйти из строя драйверы для светодиодов или же сами LED-элементы.

Дешевый светодиодный драйвер

Дешевый светодиодный драйвер

На электронную начинку устройства влияет множество причин:

  • класс защиты аппарата;
  • элементная составляющая, которая применяется для сборки;
  • параметры входа и выхода;
  • марка производителя.

Изготовление современных драйверов выполняется при помощи микросхем с использованием технологии широтно-импульсного преобразования, в состав которых входят импульсные преобразователи и схемы, стабилизирующие ток. ШИМ-преобразователи запитываются от 220 В, обладают высоким классом защиты от коротких замыканий, перегрузок, а так же высоким КПД.

Принцип работы драйвера для светодиода

Принцип работы драйвера, и его основное отличие от стабилизирующего источника питания, заключается в поддержании параметров тока заданного диапазона, независимо от величины выходного напряжения.

Принципиальная схема LED-драйвера для светодиодов

Принципиальная схема LED-драйвера для светодиодов

Как видно из схемы, ток стабилизируют сопротивления R1-R4. Заданную частоту получает, проходя через конденсаторы С1-С2. Диодный мост применяется для выпрямления тока. Следует отметить, что стабилизация частоты и напряжения осуществляется как перед выпрямлением, так и после преобразования переменного тока в постоянный. Таким образом, достигается максимальная точность заданных параметров.

Ремонт блока питания для светодиодной ленты

Зачастую все дешевые китайские блоки питания для светодиодных лент выглядят примерно так. Стоит ли браться за ремонт такого блока? Стоит однозначно!

Ремонт блока питания для светодиодной ленты

Как правило, если плата блока питания целая, и не превратилась в кусок обуглившегося радио-хлама, то ремонту такой блок подлежит.

Схема, блок питания для светодиодной ленты

Схемы в таких блоках почти всегда одинаковые, для наглядности можно пользоваться схемой изображенной ниже. Типичная схема, которая используется в подобных блоках питания.

Схема, блок питания для светодиодной ленты

Основные неисправности в этих блоках питания:

  1. Микросхема ШИМ контроллер — TL494. Аналог: МВ3759, IR3M02, М1114ЕУ, KA7500 и т.д.
  2. Конденсаторы С22, С23 – высыхают, вздуваются и т.д.
  3. Ключевые транзисторы Т10, Т11.
  4. Сдвоенный диод D33 и конденсаторы С30-С33.
  5. Остальные элементы выходит из строя крайне редко, но тоже не стоит упускать их из вида.

Для начала вскрываем наш блок и осматриваем предохранитель. Если он целый, подаем питание и измеряем напряжение на конденсаторах С22, С23. Оно должно быть порядка 310 В. Если напряжение такое, значит сетевой фильтр и выпрямители исправны.

Следующим этапом станет проверка ШИМ. У нашего блока это микросхема КА7500.

Ремонт блока питания для светодиодной ленты

— на 12 выводе должно быть около 12-30 В. Если нет, проверяем дежурку. Если есть – проверяем микросхему.

Читайте так же:
Выключатель для дополнительного света

Ремонт блока питания для светодиодной ленты

— на 14 выводе должно быть около +5 В.

Ремонт блока питания для светодиодной ленты

Если нет, меняем микросхему. Если есть – проверяем микросхему осциллографом согласно схеме.

Как проверить TL494 без осциллографа?

Если нет осциллографа, рекомендуем взять заведомо рабочий блок питания, установить вместо микросхемы DIP панель, куда можно подключать проверяемые ШИМ контроллеры. Это единственный достоверный и вменяемый способ проверки TL494 без осциллографа.

Наша микросхема КА7500 после проверки, оказалась неисправной. Перед установкой нового ШИМ контроллера устанавливаем DIP панель.

Ремонт блока питания для светодиодной ленты

На фото мы подготовили все для замены ШИМ.

Ремонт блока питания для светодиодной ленты

Меняем ее на аналог TL494CN.

меняем ее на аналог TL494CN.

Следующим этапом станет небольшая модернизация блока. Если внимательно осмотреть сетевой фильтр есть место для установки варистора.

Ремонт блока питания для светодиодной ленты

Устанавливаем варистор К275. Он будет защищать блок от скачков высокого напряжения. При коротком скачке – варистор поглощает энергию импульса, а при длительном – сопротивление варистора станет настолько малым, что сработает предохранитель и вся схема блока останется целой.

Ремонт блока питания для светодиодной ленты

Блок перед финальным тестом.

Ремонт блока питания для светодиодной ленты

После замены неисправных компонентов подключаем блок в сеть. Как видим блок прекрасно работает. Подстроечным резистором Р1 (возле зеленого светодиода) можно точно выставить выходное напряжение на блоке питание. Диапазон корректировки лежит в пределах от 11,65 В. до 13,25 В.

Ремонт блока питания для светодиодной ленты

Как видим все работает исправно, ремонт блока питания для светодиодной ленты окончен. Учитывая, что в блоке отсутствует активная система охлаждения, рационально установить на крышку блока дополнительный кулер, закрытый сеткой в виде гриля.

Ремонт блока питания для светодиодной ленты

Важно! При ремонте блока многие его компоненты находятся под опасным для жизни напряжением. Не стоит проводить манипуляции без достаточных знаний и навыков!

Комментарии (8):

Накупил я таких лампочек… ну и меня тоже разобрало любопытство. Ещё до того, как прочитал данную статью. Так вот, у первой лампочки я также раскурочил цоколь. А для того, чтобы разбирать следующие, придумал такой способ… После того, как отпаял и снял платку со светиками (не описываю здесь снятие колпака, он у меня и с первой лампочки остался целым), и вытащив пипку на цоколе… держу в перчатках керамическую основу и грею феном цоколь со всех сторон, поворачивая лампу (вернее, что от неё осталось… часть комплектующих ведь снята). Потом, пока она не остыла, оборачиваю цоколь резинкой (старая рваная камера от детского велика), и скручиваю его по резьбе. Всё остаётся целым. Зачем, после удовлетворения любопытства, разбирать другие лампочки?… Я выпаиваю с драйвера smd резистор 15 Ом, тем самым уменьшая ток. Потом при сборке, не ставлю обратно колпак. Для лучшего охлаждения и большей светоотдачи… а роль рассеивателя выполняет светильник, в котором колпак сделан из матового стекла (такой плафон-таблетка) или абажурчики в виде кувшинчика, также из матового стекла. Пока ни одна лампа не сдохла… жалко что я не засекал время работы каждой лампы, но думаю, немного все-таки увеличил время наработки на отказ, заданную производителем. Да… после переделки потребление лампочки стало около 3W.

Almois Jobbing

О! Спасибо за полезную инфу и советы! Как-то я не догадался, что этот клей можно подплавить нагревом. Вообще, я хочу поменять светодиоды во всех этих лампочках на те, что купил в ленте с CRI >95 на Али, а для этого нужно знать какой там ток драйвер выдаёт, а ещё лучше суметь выставить его нужный. Да, и если люстра с плафоном, то это действительно отличная идея удалить плафон с лампочки…

А чтобы суметь выставить его нужный (ток), надо вкурить даташит, там есть формула, подставляешь нужный ток, получаешь номинал сопротивления (вот как раз тех, которые стоят в драйвере в параллели, на 15 и 8,2Ом). Т.е. общее сопротивление поставленных в параллель указанных резисторов 5,3Ом. Изымая 15 Ом-ный резистор, в цепи будет 8,2Ом (вместо 5,3). При этом получится 3-ваттная лампочка. Можно удалить 8,2Ом, оставляя в цепи 15, тогда лампа будет наверное меньше 2W. По поводу замены… пока эти не помрут (а я им облегчил жизнь, причем, не когда они уже полудохлые, а с новья, так что они у меня, я думаю, долгожители 🙂 ) особого смысла замены нет… что, деньги лишние?

Читайте так же:
Автомобильный выключатель света подключение

Almois Jobbing

Нормального даташита на этот драйвер я не нашёл, а то что там по ссылке — только схема подключения. Тут надо поэкспериментировать и составить таблицу самому. Менять светодиоды я точно буду, потому что:
а) заявленный срок службы светодиодов 50000 часов, а это по моим расчётам 50 лет службы у меня дома. Т. е. эти лампочки как бы раз и навсегда и они должны быть идеальны по цветовой температуре, спектру, чтоб не мерцали… (эти не мерцают).
б) цвет у этих ламп зеленит — это очень заметно в сравнении со светом из окна. Мне это не нравится и раздражает.
в) CRI у этих 85 (по данным lamptest.ru), а я уже купил на Али 5-метровые ленты с CRI 95 и с очень приятным цветом — где смог уже налепил лент, но в люстры нужно как-то через эти лампы запихнуть…

Не знаю, какой Вы даташит смотрели и никаких формул там не нашли… Конкретно по току формула I led = 0.3/Rcs. Главное, смотреть на график SOA, в зависимости от напряжения на цепочке светиков, ток не должен превышать значение, показанное на графике… другими словами, всё что ниже кривой — можно, то что выше — низзя… иначе стабу кирдык. По поводу родных светиков… не знаю, у меня ничего не зеленит, свет как от лампы накаливания… может после уменьшения тока цветовая температура изменилась?, мерцания тоже нет, на глаз не видно, и на камеру проверил, тоже… меня устраивает. Лампы брал со цветовой температурой 3000К, мне нравится теплый свет, как от старой доброй лампочки Ильича, и меня жутко бесит холодный белый свет. то такое CRI, я так толком и не понял… простите меня балбеса… 🙂

Almois Jobbing

А вот я только сейчас, прочтя этот Ваш комментарий, упёрся и таки нашёл полный «конфиденциальный» датащит на JW1792 тут: forum.cxem.net. В Сети везде только первая страница его.

И Вы неправильно написали «…ток не должен превышать значение, показанное на графике SOA …», правильное разъяснение тут: bolshoyvopros.ru/questions/3144753… — ток (сила его) задаётся резистором, а напряжение стабилизатор может сформировать почти любое, но в пределах от 32 вольт до пресечения горизонтальной линии заданного тока с серой кривой графика. Это определяет сколько минимум и сколько максимум светодиодов мы можем последовательно воткнуть, при известном рабочем напряжении каждого из них.

Мерцания у этих ламп нет, это установлено спец.измерениями на сайте lamptest.ru, и именно поэтому, изучив всё на этом сайте, я побежал в Леруа и их купил. Там как раз я и узнал всё про CRI, так что теперь этот параметр стал для меня критически важным.

Almois Jobbing

Поменять светодиоды не получилось:
Попытка заменить плохие светодиоды в светодиодной лампе на хорошие, с высоким CRI
Во-первых, не получилось нормально отпаять светодиод — сломался. Потом оказалось, что установленные тут светодиоды очень яркие и вместо одного такого нужно ставить 9 светодиодов с ленты, причём набирать столбец из 3-х параллельно и 3 ряда таких столбцов. В итоге кое-как удалось втиснуть 3 штуки как на фото — светит тройка в три раза туше любого соседнего… Не прокатило.

Вероятно, что при 15 омном резисторе лампа вообще не запустится, т.к. тока на выходе может просто не хватить.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector